Pages - Menu

Sunday, 7 May 2017

Parallel Computation


Parallel computing adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan. Idealnya, parallel processing membuat programberjalan lebih cepat karena semakin banyak CPU yang digunakan. Tetapi dalam praktek,seringkali sulit membagi program sehingga dapat dieksekusi oleh CPU yang berbea-beda tanpa berkaitan di antaranya, Maksudnya program dijalankan dengan banyak CPU secara bersamaan dengan tujuan untuk membuat program yang lebih baik dan dapat diproses dengan cepat. Dapat diambil kesimpulan bahwa pada parallel processing berbeda dengan istilah multitasking, yaitu satu CPU mengangani atau mengeksekusi beberapa program sekaligus, parallel processing dapat disebut juga dengan istilah parallel computing.
Sejarah mencatat Konferensi internasional tentang ParCo97 komputasi paralel (Parallel Computing 97) diadakan di Bonn, Jerman 19-22 September 1997. Konferensi pertama dalam seri ini dua tahunan diadakan pada tahun 1983 di Berlin. Selanjutnya konferensi diadakan di Leiden (Belanda), London (Inggris), Grenoble (Prancis) dan Gent (Belgia).
Sejak awal tujuan dengan (Komputasi Paralel) konferensi parco adalah untuk mempromosikan penerapan komputer paralel untuk memecahkan masalah kehidupan nyata. Dalam kasus ParCo97 tonggak baru dicapai dalam bahwa lebih dari setengah dari makalah dan poster yang disajikan prihatin dengan aspek aplikasi. Fakta ini mencerminkan kedatangan usia komputasi paralel.
Sekitar 200 makalah yang disampaikan kepada Komite Program oleh penulis dari seluruh dunia. Program akhir terdiri dari empat makalah diundang, 71 kontribusi ilmiah / industri kertas dan 45 poster. Selain diskusi panel tentang Komputasi Paralel dan Evolusi Cyberspace diadakan. 

A.    Parallelism concept
Komputasi paralel merupakan salah satu teknik komputasi, dimana proses komputasinya dilakukan oleh beberapa resources ( komputer ) yang independen, secara bersamaan. Komputasi paralel biasanya diperlukan pada saat terjadinya pengolahan data dalam jumlah besar ( di industri keuangan, bioinformatika, dll ) atau dalam memenuhi proses komputasi yang sangat banyak. Selanjutnya, komputasi paralel ini juga dapat ditemui dalam kasus kalkulasi numerik dalam penyelesaian persamaan matematis di bidang fisika ( fisika komputasi ), kimia ( kimia komputasi ), dll. Dalam menyelesaikan suatu masalah, komputasi paralel memerlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel.
Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Tidak berarti dengan mesin paralel semua program yang dijalankan diatasnya otomatis akan diolah secara paralel. Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah / operasi secara bersamaan ( komputasi paralel ), baik dalam komputer dengan satu ( prosesor tunggal ) ataupun banyak ( prosesor ganda dengan mesin paralel ) CPU. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam suatu jaringan komputer lebih sering istilah yang digunakan adalah sistem terdistribusi ( distributed computing ). Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan ( dalam waktu yang sama ), semakin banyak pekerjaan yang bisa diselesaikan.


B.     Distributed Processing
Definisi umum dari pemrosesan terdistribusi (distributed processing) yaitu cara untuk mempercepat pengolahan data atau informasi dengan mendistribusikan pekerjaan atau intruksi ke banyak komputer yang telah dipilih untuk memberi kekuatan pemrosesan yang lebih cepat. Pemrosesan terdistribusi biasa disebut juga dengan komputasi terdistribusi. Tujuan dari komputasi terdistribusi adalah menyatukan kemampuan dari sumber daya (sumber komputasi atau sumber informasi) yang terpisah secara fisik, ke dalam suatu sistem gabungan yang terkoordinasi dengan kapasitas yang jauh melebihi dari kapasitas individual komponen-komponennya.
Tujuan lain yang ingin dicapai dalam komputasi terdistribusi adalah transparansi. Kenyataan bahwa sumber daya yang dipakai oleh pengguna sistem terdistribusi berada pada lokasi fisik yang terpisah, tidak perlu diketahui oleh pengguna tersebut. Transparansi ini memungkinkan pengguna sistem terdistribusi untuk melihat sumber daya yang terpisah tersebut seolah-olah sebagai satu sistem komputer tunggal, seperti yang biasa digunakannya. Dalam prosesnya setiap komputer berinteraksi satu sama lain untuk mencapai tujuan bersama.
Definisi lain dari distributed processing adalah mengerjakan semua proses pengolahan data secara bersama antara komputer pusat dengan beberapa komputer yang lebih kecil dan saling dihubungkan melalui jalur komunikasi. Setiap komputer tersebut memiliki prosesor mandiri sehingga mampu mengolah sebagian data secara terpisah, kemudian hasil pengolahan tadi digabungkan menjadi satu penyelesaian total. Jika salah satu prosesor mengalami kegagalan atau masalah yang lain akan mengambil alih tugasnya.
Dengan kemajuan teknologi telekomunikasi dan teknologi informasi atau lebih dikenal dikenal dengan istilah Telematika atau dalam istilah asingnya ICT (Information and Communication Technology) menawarkan sesuatu yang pada awal perkembangan komputer sangatlah mahal yaitu mini komputer, workstation dan personal komputer yang memiliki kemampuan setara mainframe dengan harga yang jauh lebih murah.
Hal itu mendorong munculnya paradigma baru dalam pemrosesan data yaitu apa yang disebut distributed processing dimana sejumlah komputer mini komputer, workstation atau personal komputer menangani semua proses yang didistribusikan secara phisik melalui jalur jaringan komunikasi. Salah satu bentuk dari distributed processing adalah arsitektur client-server. Menurut Wikipedia, klien-server atau client-server merupakan sebuah paradigma dalam teknologi informasi yang merujuk kepada cara untuk mendistribusikan aplikasi ke dalam dua pihak: pihak klien dan pihak server. Dalam model klien/server, sebuah aplikasi dibagi menjadi dua bagian yang terpisah, tapi masih merupakan sebuah kesatuan yakni komponen klien dan komponen server.
Komponen client juga sering disebut sebagai front-end, sementara komponen server disebut sebagai back-end. Komponen client dari aplikasi tersebut dijalankan dalam sebuah workstation dan menerima masukan data dari pengguna. Komponen client tersebut akan menyiapkan data yang dimasukkan oleh pengguna dengan menggunakan teknologi pemrosesan tertentu dan mengirimkannya kepada komponen server yang dijalankan di atas mesin server, umumnya dalam bentuk request terhadap beberapa layanan yang dimiliki oleh server. Komponen server akan menerima request dari client, dan langsung memprosesnya dan mengembalikan hasil pemrosesan tersebut kepada client. Client pun menerima informasi hasil pemrosesan data yang dilakukan server dan menampilkannya kepada pengguna, dengan menggunakan aplikasi yang berinteraksi dengan pengguna.
Pemrosesan paralel adalah pendekatan komputasi untuk meningkatkan tingkat di mana satu set data diolah dengan pengolahan bagian yang berbeda dari data pada waktu yang sama secara simultan atau bersamaan pada sebuah komputer dan berfungsi memecah beban besar menjadi beberapa beban kecil untuk mempercepat proses penyelesaian masalah. 
Didistribusikan pengolahan paralel menggunakan pemrosesan paralel pada beberapa mesin. Salah satu contoh dari hal ini adalah bagaimana beberapa komunitas memungkinkan pengguna untuk mendaftar dan mendedikasikan komputer mereka sendiri untuk memproses beberapa data set yang diberikan kepada mereka oleh server. Ketika ribuan pengguna mendaftar untuk ini, banyak data dapat diproses dalam jumlah yang sangat singkat.
Tipe lain dari komputasi paralel yang kadang-kadang disebut "didistribusikan" adalah gagasan dari sebuah komputer paralel cluster. Sebuah cluster akan banyak CPU terhubung melalui kecepatan tinggi koneksi ethernet ke hub sentral (Server) yang memberi masing-masing beberapa pekerjaan yang harus dilakukan. Metode cluster mirip dengan metode yang dijelaskan dalam paragraf di atas, kecuali bahwa semua CPU secara langsung terhubung ke server, dan satu-satunya tujuan mereka adalah untuk melakukan perhitungan yang diberikan kepada mereka.

Parallel distributed computing dapat dibentuk dari :
1.      Ada : digunakan konsep pertemuan yang menggabungkan fitur RPC dan monitor.
2.      PVM (Parallel Virtual Machine) untuk mendukung workstation clusters
3.      MPI (Message-Passing Interface) programming GUI untuk parallel computers.




C.     Architectural Parallel Computer

1.      SISD
Yang merupakan singkatan dari Single Instruction, Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.

2.      SIMD
Yang merupakan singkatan dari Single Instruction, Multiple Data. SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).

3.      MISD
Yang merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.

4.      MIMD
Yang merupakan singkatan dari Multiple Instruction, Multiple Data. MIMD menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.

Singkatnya untuk perbedaan antara komputasi tunggal dengan komputasi paralel, bisa digambarkan pada gambar di bawah ini:
 


  
Gambar 1 Penyelesaian Sebuah Masalah pada Komputasi Tunggal
  

  
Gambar 2 Penyelesaian Sebuah Masalah pada Komputasi Paralel

Dari perbedaan kedua gambar di atas, kita dapat menyimpulkan bahwa kinerja komputasi paralel lebih efektif dan dapat menghemat waktu untuk pemrosesan data yang banyak daripada komputasi tunggal.
Dari penjelasan-penjelasan di atas, kita bisa mendapatkan jawaban mengapa dan kapan kita perlu menggunakan komputasi paralel. Jawabannya adalah karena komputasi paralel jauh lebih menghemat waktu dan sangat efektif ketika kita harus mengolah data dalam jumlah yang besar. Namun keefektifan akan hilang ketika kita hanya mengolah data dalam jumlah yang kecil, karena data dengan jumlah kecil atau sedikit lebih efektif jika kita menggunakan komputasi tunggal.

Sumber :


No comments:

Post a Comment